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Abstract:

This paper focuses on studying the solutions of second-order fuzzy initial value
problems using the fuzzy Sumudu transform under the concept of generalized
differentiability. The paper provides an example to illustrate the application of
the proposed approach. The obtained solutions are presented in parametric
form using fuzzy numbers. The results demonstrate the effectiveness of the
fuzzy Sumudu transform in solving fuzzy differential equations. The
conclusions highlight the advantages of the proposed method over previous
approaches based on Hukuhara differentiation.
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Introduction:

The study of fuzzy differential equations (FDEsS) provides a suitable
framework for mathematical modeling of real-world problems where
uncertainty or ambiguity prevails. Most practical problems can be modeled as
FDEs. Therefore, FDEs play a crucial role in both theory and practical
implementation. They have wide-ranging applications in diverse fields,
including population modeling, engineering, chaotic systems, and hydraulic
modeling. The differentiability of functions with fuzzy values was first
introduced by Change and Zadeh ™ and then Dubois and Prade 2! defined and
used the expansion principle. Other methods are discussed by Puri and
Ralescu®  who generalized and extended the concept of Hukuhara
differentiability for set-valued mappings to a class of fuzzy mappings.

In the last few years, many researchers have worked on the theory of fuzzy
differential equations [ Bl and other recent works, such as the study of some
topological properties and structure of the solutions to the Cauchy problem for
fuzzy differential systems (see [ [1]). Subsequently, some significant
extensions of the fuzzy differential

equations based on H-derivative are the fuzzy functional differential equations
81 the random fuzzy differential equations !, and the fuzzy neutral differential
equations 1%, However, the approach that employs Hukuhara differentiation
encounters a significant drawback. Specifically, the solution progressively
becomes more indistinct as time elapses, making it exceedingly challenging to
derive profound outcomes regarding the qualitative theory for fuzzy
differential equations. These outcomes may include properties like asymptotic
behavior, periodicity, and bifurcation.

The strongly generalized differentiability was introduced in [** and studied in
(121 1131 This concept allows us to resolve the shortcoming mentioned above.
Indeed, the strongly generalized derivative is defined for a larger class of fuzzy
number valued functions than the Hukuhara derivative. Hence, we use this
differentiability concept in the present paper.
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The fuzzy Sumudu transform is an effective method for solving fuzzy
differential equations. Applying the fuzzy Sumudu transform directly makes it
possible to find the solution of the fuzzy differential equation that meets the
given initial condition. The concept of the fuzzy Sumudu transform was
initially introduced by Abdul Rahman and Ahmed 4. Subsequently, many
research papers have utilized the fuzzy Sumudu transform to investigate the
solution of fuzzy differential equations 5} 1261,

In this work, we investigate the solutions to the problem
§y"(x) +By'(x) = [0] , x>0 1)
y(0) = [A]lq, ¥'(0) = [B], 2

by the fuzzy Sumudu transform under the concept of generalized
differentiability, where §,8 > 0,[0], = [-1+ a,1 — a], aand b are
symmetric triangular fuzzy numbers with supports [ga.ﬁa], [Qa;ga] and the

o-level sets of a, b are
[ N a—a a—a\ |
-g 2 2 a-

o (5)e7- ()1

The structure of this paper is as follows: Section provides an overview of the
preliminary concepts, presents the main results, and Section concludes the

paper.
Preliminaries:

a,a—

~

a,b—

The following concepts and definitions are useful in the given
work:

Definition 2.1. 1 A fuzzy number is a mapping u: R — [0,1] with the
following criteria.

1. wisnormal, i.e., there exists x, € R such that u(x,) = 1.
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2. uisfuzzy convex, i.e., u(Ax + (1 — Ay) =
min{u(x),u(y)},forall 2 € [0,1],x,y € R.

3. u isupper semi continuous, i.e., for any x, € R,

u(xo) = lim u(x).
x—>x5
4. Suppu = {x € R:u(x) > 0} is the support of u, and its closure cl (supp
u) is compact.
Definition 2.2. 71 Let u be a fuzzy number defined in F(R). The a-level
set of u, for any a € [0,1],denoted by [u],, is a crisp set that contains all
elements in R, such that the membership value of u is greater or equal to «,
that is

[u]lg = {x € Riu(x) = a} 3)

Whenever we represent the fuzzy number with a-level set, we can see that
it is closed and bounded. It is denoted by [u,, u,], Where they represent the
lower and upper bound a-level set of a fuzzy number, respectively.

As the fuzzy number is resolved by the interval [u],, researchers!*H]
defined another representation, parametrically, of fuzzy numbers as in the
following definition.

Definition 2.3. 2% A fuzzy number u in parametric form is a pair [ug, u,] of
functions u, and u, for any a € [0,1], which satisfies the following
requirements.

1. wu, isabounded non-decreasing left continuous function in (0,1], and
right continuous at 0.

2. U, is a bounded non-increasing left continuous function in (0,1], and
right continuous at 0.

3 Uy S U

Definition 2.4. 21 The a-level set of symmetric triangular fuzzy number
A with support [ag, @,] is:
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a-a — a-a
[Aa,Aa] = [a + ( )a, a-— (T) a] 4)

Definition 2.5. 1% Let [u], = [wg, Ua, [V]a = [v, Pe] and k € R, the
operations addition, subtraction, multiplication and scalar multiplication
are defined as

[u®v]e = [ula + [Vl = [Ua + Vo, Ua + V4] )

[u©v]e = [ula — [Vl = [Ua — Vo, Ua — V4] (6)
_ [ min {UgVq,UaVa,UqVa UaVa}

[qu]a - (max {EaZwEaga:aaZaﬂaaa}) (7)

(kug, kuy), k=0

8
(g kug), k<0 ®)

[kule = klule = {

Definition 2.6. (22! For arbitrary fuzzy numbes [u], = [ug, U], [V]s =
[v, V] the quantity
d(u,v) = sup max {Jue — va, [y — Ve |}
sas

Is the Hausdroff distance between u and v.

Definition 2.7. 1 Let f: R — F(R) and it is represented by
[fa(x),fa(x)]. For any fixed a € [0,1], assume f(x) and ]_‘a(x) are
Riemann-integrable on [a, b] for every b > a, and assume there are ywo
positive M, and M, such that [ |fa(x)| dx < M, andf |f ()| dx <
M, forevery b > a. Then, f(x) is improper fuzzy Riemann-integrable

on [a, o) and the improper fuzzy Riemann-integrable is a fuzzy number.
Further more, we have

Jo f@dx =[] fu (0dx, J;” f,(x)dx] (9)

Definition 2.8. B If u, v € F(R) and if there exists a fuzzy subset k €
F(R) such that k + u = v is unique. In this case, k is called the
Hukuhara difference, or simply H-difference of u and v denoted by
v—ty,
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Definition 2.9. M Let f: R - F(R), and x, € (a,b). Then f is said to
be strongly generalized differentiable at x,, if there exists an element
f'(x) € F(R), such that

1. Forall h > 0 sufficiently small, there exist f(x, +
R)—" £ (x0), f (%) —" f (xo — h) and the limits (in the metric D)

o floth)-Hf(xg) 1. fle)-Fflxo-n) _ .,
lim - = lim . = f'(x) (10)

2. Forall h > 0 sufficiently small, there exist f (xq)—" f (xo +
h), f (xo — h)—" f(x,) and the limits (in the metric D)

. fxo)-Hf(xo+h) _ 1. flro—h)-Hf(xe) _
fim LD iy LCOIC0) 1 ay

3. Forall h > 0 sufficiently small, there exist f(x, +
h) = f(xo), f (xo — h)—" f (x,) and the limits (in the metric D)

. flxo+h)-Hf(xo) _ . fleo—h)-Hf(xe) _
lim LI iy [COLICD 1) (1)

4. Forall h > 0 sufficiently small, there exist f(xq)—"f(xo +
h), f (xo)—"f(xo — h) and the limits (in the metric D)

. flxo)=Hf(xo+h) . flxo—R)-Hf(xo—h) y
= = 13
lim " lim - f1(x) (13)

In this paper, we only consider case (1) and (2) in the strongly
generalized differentiability proposed by Beda and Gall* since they are
more important as stated in 2411121,

Theorem 2.1. 11 Let f: R — F(R) be a continuous fuzzy-valued and
denote f(x) = [}_fa(x),]_fa(x)], foreach a € [0,1]. Then

1. Ifis (1)-differentiable, then fa () and /7a(x) are differentiable
functions and f'(x) = [ﬁ;(x),f;(x)].

2. Ifis (2)-differentiable, then fa (%) and j_fa(x) are differentiable

functionsand  f'(x) = [ﬂ(x),ié(x)].
197



~_ Scientific Journal of Faculty of Education, Misurata University-Libya, No25, Sep 2024
7 Published online in September

/1/ ! /L) 2024 ks (9 pdall g Qualdl) asal) (Ll ) juaa daaly A il IS dpalal) Aanal)

Issn: 2710-4141
2024/09/01 : pdl) g S 2024/05/13 ) fo )l

Definition 2.10. ™ We say that a mapping f: R — F(R) is strongly
generalized differentiable of the second-order at x, € (a, b), if there
exists an element f"'(x) € F(R), such that

2. Forall h > 0 sufficiently small, there exist f'(x, +
h)=H £ (x0), f' (x0) =" f'(xq — h) and the limits (in the metric D)

£ (xo+R)=H f' (x0) £ (x0)— Hf (xo—h) "
}z—>0 h N }l—)O =f (x) (14)

For all h > 0 sufficiently small, there exist f'(xo)—"f"(xq + h), f'(xo —
h)—H f'(x,) and the limits (in the metric D)

. fxo)=Hf (xo+h) _ . fxo—m)-Hf (xo0) _ L
;ll_I)% - = }ll_r)% — = f"(x) (15)
For all h > 0 sufficiently small, there exist f'(xo + )= f'(xo), f' (xo —
h)—H f'(x,) and the limits (in the metric D)

M xo+rh) = (x0) £ (xo—n)=H £ (x0) 7
g LWL 0Oy LCDLTC0) (16)

For all h > 0 sufficiently small, there exist f'(xo)—"f'(xo +
h), f'(xo)="f'(xo — h) and the limits (in the metric D)

o flxo)-f (oth) . f(xo—R)-Hf'(xo—h) _ .,
lim " = lim - = f"(x) 17)

Theorem 2.2. 151 Let f: R — F(R) be a continuous fuzzy-valued and

denote f(x) = [}_fa(x),]_fa(x)], foreach a € [0,1], the function f is (1)-

differentiable or (2)-differentiable.

3. If fand f' are (1)-differentiable, then }_f’a(x) and Fa(x) are
differentiable functions and £ (x) = [_é’(x),f;:(x)].

If f is (1)-differentiable, and f” is (2)-differentiable, then fa (X) and

f ,(x) are differentiable functions and £ (x) = [j_f;’(x), fi' (O]
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If f is (2)-differentiable, and f” is (1)-differentiable, then ia(x) and
f,(x) are differentiable functions and £ (x) = [f;l(x),i,;’(x)].

If f and f” are (2)-differentiable, then f”,(x) and Fa(x) are
differentiable functions and f"'(x) = [_é’(x),]_f:(x)].
Definition 2.11. 2 [10] Let f: R = F(R) be continuous fuzzy-valued

function defined in parametric form f(x) = []_fa(x),j_fa(x)] for0<a<

1. Suppose that f (ux) © e~ is improper fuzzy Riemann integrable
function on [0, =), with u > 0 a real parameter, then

S[F] = [ flux) © e ™ dx = G(w) (18)

Is called fuzzy Sumudu transform. Since f is fuzzy-valued function,
therefore parametric representation of Eq. (10) willbe, for 0 < a < 1:

[y fu) @ e ¥dx = [ fu(wx)edx, [ F, (woe*dx|  (19)

or

SIF@] = [$ [fa )], SIF,(01] = [6@), Gw)] (20)

were

6w =5[] = [ fatwoeax
and

G = S[f, )] = faoo f,(ux)e *dx (21)

Theorem 2.3. 4 Assume that the f(x) is a continuous fuzzy-valued
function on [0, =), also k = 0, thus

S[kO f)] =k O S[f ()] (22)

Theorem 2.4.1 Let £, g: R —» F(R) be two continuous fuzzy-valued
functions. Suppose that c; and c, are arbitrary constants, then
199
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S[(C1 © f(x)) SY) (Cz © g(x))] =
(¢t O S[F()]D) & (c; © S[g(x)D.

Theorem 2.5. 1 Suppose £ (x) is a continuous fuzzy-valued function
on [0, ), then

S [ @ df(x)] dG(u) (23)

Theorem 2.6. 1 Suppose f'(x) be a fuzzy value integrable function, as
well as f(x) be the primitive of f’(x) on [0, ). Therefore,

siFel = (2o sirwi) e (2o o) (24)
where f is considered to be (1)-differentiable, or
siFl = (Zor)e (Zosirwl) (25)

where f is considered to be (2)-differentiable.

Theorem 2.7.1161 Suppose f"'(x) be a fuzzy value integrable function,
as well as f(x) be the primitive of f"'(x) on [0, ©). Therefore,

1 1
SIf" () = (5 O SIFE) © (u— Of(0)>

otorm) (26)
where f and f' are (1)-differentiable, or
-1 -1
SIF" (0] = (7 o f (0)) o (Zoslrmi)
-(Lorm) @)

where f is (1)-differentiable and f” is (2)-differentiable, or
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sif" @1 = (7 010 ) & (7 Ostrw))

o(to ro) 28)

where f is (2)-differentiable and f” is (1)-differentiable, or
51" @) = (1 © 511 © (0 £0))
u? u?

-(form) 29)
where f and f' are (2)-differentiable.

Main Results:

In this section, we research the solutions to problems by fuzzy Sumudu
transform under the concept of generalized differentiability In this paper,
(i,j) solution means that y is (i)-differentiable, y' is (j)-differentiable,
1,j=1,2.

3.1. (1,1) solution of the problem:
If y and y’ are (1)-differentiable, since

S[[0le] = 8 ((u% oshl)e(zoym)e(to y'(O))> +
p ((g Osh@1)6 (o y(O))). (30
we have the equations

S[=1+al = 58 [ (0] = S¥e(0) = 22 (0) + 5 [y ()] -
£ y(0), (31)

5 6
S[1—a]l == Sy, (0] - y (0) —=¥'¢(0) + 55[?0((96)]
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~£5 (0. (32)
u”’ a
Using the initial values (2), we get
5
S [ya(x)] ( +Bu) =(-1+a) + B, + ( g) (33)
5 5
Sy, @] (55%) = (1 - @) +2B, +(—2 %) 4. (34)
From this, we obtain
u? su
S [ya(0)| = m (-1 sogn Ba  Aco (35)
S[ya(x)] 5+;3 B (36)

Now, taking the inverse Sumudu transform of the above equations, (1,1)
solution is obtained as

Vo) = (—1 + @) <B ;( ‘Ex—1)>—‘%(e‘£x 1>+Aa, (37)

7.0 =(1-a) <ﬁ - (e‘%‘ - 1)) - ‘%(e‘%x - 1) +74, (39

®)la = [ye(0),7,00)]
3.2. (1,2) solution of the problem:

If y is (1)-differentiable and y' is (2)-differentiable, We have the
equations

5[[01a]=5<( © ') (oSl - (12@f(°)>>+

p ((ﬁ oSl e(to y(o>)>, (39)

S[-1+a] = =254(0) + 5 S[7, (0] — =¥, (0) + £ [y, ()| -
£ y.(0) (40)
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S[1— a] = =2 ya(0) + 55 [y ()| - 2 72(0) + £5[7,(0)] -
B —
£5.(0). (41)

From this, we obtain the equation
6_
257,00+ L5 [ye@] = -1+ ) + 2B + A, + L4, (42)

S[ye@]+Ls[F, 0] =1 -a)+2B, + 24, +24,,  (43)

If S[ (x)] in the equation (42) is replaced by the equation (43), we
have

apfu?

S [Ya(x)] s (1 - a) + 62 ,32 2 E{X 52—,3211,2 E(X + A(Z’ (44)
Now, taking the mverse Sumudu transform of the above equations, (44)
solution is obtained as

) = (=) ~5+ £ (e -1)) =B (S (e + B -2) ) +
ga(_; (b — ot ))Ma, s

Similarly, the upper solution is obtained as

7 = 1 v (< (el 1)) (S e e
2)>+B (ﬁ(eg _e 5>> + A, 5)

3.3. (2,1) solution of the problem:

If y is (2)-differentiable and y' is (1)-differentiable, We have the
equations

203



Scientific Journal of Faculty of Education, Misurata University-Libya, No25, Sep 2024
~ Published online in September
2024 sk (g pdall g Gualdl) ) bt AN pan daaly iy 2 A0S Lalad) Alaal)
Issn: 2710-4141
2024/09/01 : &l g )5 2024/05/13 zpdud) g

S1[01e] = & ((— ofm)e(Fosrwl)e(io f'(o>)> '
p ((—1 orm)e(Zo S[f(x)])>, (@)
We have the equations

S[-1+a] = -7 (0) + 25[7,0)] - 272(0) - £7,(0) +

u

Esly, @], (48)
S[1 = al = = 5 Ya(0) + =5 [y ()| = $ya(0) = £y, (0) +
25y, (49)
That is,
$[a(0)] = 5o (~1 4+ @) + 525 Bo + Ag, (50)
S[7, )] = SZ;u (1—a)+ 5qu B, +4,. (51)

From this, we obtain

Yo () = (1 — @) (% - 31(1 - e—%f)> + %(1 - e-%f) + 4, (52)

y.(x) = (-1+a) (% _ ﬁi(1 _ e-%f)) + %(1 - e_§x> +4, (53)

Y@la = |92, 7,60]
3.4. (2,2) solution of the problem:
If y and y’ are (2)-differentiable, since

STi0le] = 6 <(%@5[f(x>]) o(orm)-(t0 f'(O))) "

p ((;1 ormle (o S[f(x)])), (54)
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the equations

S[=1+al = =5 [72(0] = Z¥a(0) — 2 y4(©) - 25 (0) +
£y, )], (55)

é é é
S[1—al = 5[7, 0] - 57,0 ~ 27 ~ Dy, 0 +

oS e (56)
From this, we obtain the equation

8 _ P 5—
ZS|r@|+E25[7,00] = 1+ @) + FAc +5Bo+
%Zm (57)

25+ L5y =1 -0+ 34, +2B,

+24,. (58)

If S[¥_(x)] in the equation (58) is replaced by the equation (57), we
have

S| = 75 (1= @) + 57 B — 510 By + Ag, (59)

52— Bzuz 52—,82112 =

Taking the inverse Sumudu transform of the above equations (57 ), the
lower solution is obtained as

X

Ya() = (- 1+a)<ﬁ2< %x_l)_ﬁ>

—B, <zﬁ(e§ +e§ —2)>+B <ﬁ<e§ —e§)>+éa, (60)

Similarly, the upper solution is obtained as

X

7,00 = (1= ) (g5 (b= 1) - 3)
205
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— B B B B —
—B, <% (esx +e 6" — 2)) + B, (% (63" - e7")> +A4,  (61)

Examples 1. Consider the solutions of the problem
2y"(x) +y'(x) =[0]a, x>0
y0)=(-14+al1l—a)
y'(0) =(a,2—a)
By fuzzy Sumudu transform
Solve:

(1,1) solution is
X X
Yo(x) = (-1+a) (x + 2e‘i) +a (1 — 2e‘7) +1
X
=a(x+1)+1—x—2e 2
X X X
y,(x)=1-a) (x + Ze_i) -2 (23‘5 — ae‘i) —a+3
_x
=—a(l+x)+x—2e 243
(1,2) solution is
x x x x x
Ya(x) = (1—a) (29E - x) -2-a) (87 + 8_7) +a (67 — e_f)
+14+a
ZQ(X+1)+1—X—2€_§

¥, = (~1+a) (2¢2 ~x) —a(e2 +e72) + 2~ a) (e —e72)
+3—-—«a

=—a(l+x)+x—2e2+3
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aXa(x) > O, aia(x)
oa oa

< 0,y,(x) <7,(0)

Ya(x) < 5,00, 54 () <7, (x),
(1,1) solution is a valid fuzzy function. If

aXa(x) > O, aia(x)
Ja Ja

<0,y,(0) <7,(0)

Ya () < 5,0, 54 () <7, (x),
(1,2) solution is a valid fuzzy function. For (1,1) solution, since

0ya (x) ay,(x)
a =x+1>0, 9 =—(1+x) <0,

V() =Y. () =(1-a)(2+x) 20

Yo () = Y () = 2(1 = @) 2 0,5, (x) — yi' (x) = 0

(1,1), (1,2) solutions are a valid fuzzy functions. Also, for (1,1) and
(1,2) solutions, since

yi(x) = 2 - 277 = v, (x),
y1(0) = Ya(x) = 1+ )1 —a) =y, (x) -y, (x),

(1,1) and (1,2) solutions are symmetric triangular fuzzy numbers for any
x > 0 time.

(2,1) solution is
X
Vo) =a(l—x)+1+x—2e 2,

X
y,(x) = alx—1)—x—2e2+3

(2,2) solution is
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X
Vo) = a(l—x)+1+x—2e 2,
y,(x) =a(x—1)—x—2e2+3

Y@]a = [7a(),7,()]

0Ya () S0, ay, (x)
Jda Jda

Ve () < Yo' (0),Y,"(x) < ya" (),

< 0,5,(x) <¥,(x)

(2,1) solution is a valid fuzzy function. If

aXa (x) >0, aya(x)
Jda Jda

<0, Xa(x) < ya(x);

Yo (1) < ya(), 7, () < yi (x),

(2,2) solution is a valid fuzzy function. For (2,1) solution, since

0Ya(x) ay ,(x)
= =1-x, =x—1,
Jda Jda
Vo () = Ya(x) = (1 —a)(1 —x),
Ve 7
if x <1, we have Ya) >0, 094) <0, and
da Ja

Ya(x) ¥, (x). Also, since
Ye(x) =¥, (x) =2(1 - a) 20,

Vi () F(x) = 0.

(2,1) solution is a valid fuzzy function for x < 1. Similarly, (2,2)
solution is a valid fuzzy function for x < 1. for (2,1) and (2,2) solutions,
since
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1) = 2-2e77 = F,(x) ,
Y109 = o) = (1 = D)1 - @) =7,(x) 7, (x),

(2,1) and (2,2) solutions are symmetric triangular fuzzy numbers for any
x > 0 time. These results are the same as obtained by Hulya et al

2020121,
The solution can be represented graphically according to the following
figures
7 »//'___ IR NnE!
/ ,//'"J

Figure 1. Graphic of (1,1) and (1,2) solutions for « = 0.5

Figure 1. Graphic of (2,1) and (2,2) solutions for « = 0.5
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Conclusions:

In this paper, we introduced a novel approach to solving second-order fuzzy
initial value problems using the fuzzy Sumudu transform and generalized
differentiability. Our method offers a direct and efficient solution for fuzzy
differential equations with fuzzy initial conditions, overcoming limitations of
traditional approaches. By expressing solutions as parametric representations
of fuzzy numbers and utilizing the inverse fuzzy Sumudu transform, we
provide a comprehensive framework for analyzing the behavior and
characteristics of fuzzy initial value problems. The combination of the fuzzy
Sumudu transform and generalized differentiability shows great promise in
solving fuzzy initial value problems and has practical applications in various
domains. Also, we find that the solution obtained by the fuzzy Sumudu
transform not only proves to be more concise, but also shows greater
flexibility than the solution by the fuzzy Laplace transform. This result
emphasizes the practical advantages of using the fuzzy Sumudu transform in
solving fuzzy initial-valued differential equations.
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